Sodium and Chloride Concentrations, pH, and Depth of Airway Surface Liquid in Distal Airways

نویسندگان

  • Yuanlin Song
  • Jay Thiagarajah
  • A.S. Verkman
چکیده

The composition and depth of the airway surface liquid (ASL) are key parameters in airway physiology that are thought to be important in the pathophysiology of cystic fibrosis and other diseases of the airways. We reported novel fluorescent indicator and microscopy methods to measure [Na+], [Cl-], pH, and depth of the ASL in large airways (Jayaraman, S., Y. Song, L. Vetrivel, L. Shankar, and A.S. Verkman. 2001. J. Clin. Invest. 107:317-324.). Here we report a stripped-lung preparation to measure ASL composition and depth in small distal airways. Distal ASL was stained with ion- or pH-sensitive fluorescent indicators by infusion into mouse trachea of a perfluorocarbon suspension of the indicator. After stripping the pleura and limited microdissection of the lung parenchyma, airways were exposed for measurement of ASL [Na+], [Cl-], and pH by ratio imaging microscopy, and depth by confocal microscopy. The stripped-lung preparation was validated in stability and tissue viability studies. ASL [Na+] was 122 +/- 2 mM, [Cl-] was 123 +/- 4 mM and pH was 7.28 +/- 0.07, and not dependent on airway size (<100- to >250-mum diameter), ENaC inhibition by amiloride, or CFTR inhibition by the thiazolidinone CFTRinh-172. ASL depth was 8-35 mum depending on airway size, substantially less than that in mouse trachea of approximately 55 mum, and not altered significantly by amiloride. These results establish a novel lung preparation and fluorescence approach to study distal airway physiology and provide the first data on the composition and depth of distal ASL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH.

The concentration of salt in the thin layer of fluid at the surface of large airways, the airway-surface liquid (ASL), is believed to be of central importance in airway physiology and in the pathophysiology of cystic fibrosis. Invasive sampling methods have yielded a wide range of ASL [NaCl] from 40 to 180 mM. We have developed novel fluorescent probes and microscopy methods to measure ASL thic...

متن کامل

Secretion of acid and base equivalents by intact distal airways.

Secretion of HCO(3)(-) by airway submucosal glands is essential for normal liquid and mucus secretion. Because the liquid bathing the airway surface (ASL) is acidic, it has been proposed that the surface epithelium may acidify HCO(3)(-)-rich glandular fluid. The aim of this study was to investigate the mechanisms by which intact distal bronchi, which contain both surface and glandular epitheliu...

متن کامل

Regulation of the depth of surface liquid in bovine trachea.

The luminal surface of airways is lined by a thin film of airway surface liquid (ASL). Physiological regulation of the depth of ASL has not been reported previously. In this paper, we have used low-temperature scanning electron microscopy of rapidly frozen specimens of bovine tracheal epithelium to demonstrate alterations in the depth of ASL in response to the cholinergic agonist methacholine. ...

متن کامل

Altered NaCl Concentration of Airway Surface Liquid in Cystic Fibrosis

The major pathology in cystic fibrosis (CF) results from the colonization of the airways by the bacterium Pseudomonas aeruginosa. Indirect evidence suggests that this colonization occurs because the thin (10 μm) film of liquid that lines the airways (so-called airway surface liquid; Fig. 1) is saltier in CF patients than in healthy individuals and the endogenous antibiotics that are secreted by...

متن کامل

Inhibition of airway surface fluid absorption by cholinergic stimulation

In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2003